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A new procedure for bound-state QED, based upon a covariant form of the time-evolution
operator is reported. This procedure is applicable also to systems with closely spaced or quasi-
degenerate levels, where the standard S-matrix formalism can generally not be used due to
quasi-singularities. We have applied the procedure to the heliumlike ions of neon and argon,
and produced the first numerical QED results for a complete fine-structure splitting. Good
agreement is obtained with recent experimental data. The new procedure is closely related
to standard many-body perturbation theory (MBPT), which may open up possibilities to
combine QED and MBPT in a more systematic way.

1 Introduction

There is presently a renewed interest in the study of the fine structure of helium and heliumlike
ions, the main reason being that accurate comparison of experimental and theoretical data can
lead to an independent determination of the fine-structure constant α 1,2,3,4.

Quite recently a very accurate measurement of the fine-structure separation 2 3P1 − 2 3P0

in neutral helium has been reported with an accuracy of 30 ppb 5. Compared with accurate
analytical calculations 4 this yields a value of the fine-structure constant, 1/137.0359864(31),
which differs from the accepted value by four standard deviations. Quite accurate values exist
also for the separations in heliumlike ions, some of which are shown in Table 1 6,7,8,9,10,11.

The most accurate QED calculations on heliumlike ions are performed by means of the
analytical Zα expansion, which works well for low Z. For higher Z the convergence rate decreases
drastically, and a rapidly increasing number of terms is needed to reach high accuracy. For high
Z, where Zα approaches unity, the power expansion cannot be used, and it is necessary to utilize
numerical methods, using a Furry-like picture, which corresponds to an expansion to all orders
in Zα.

The standard numerical technique for bound-state QED is based upon the S-matrix formu-
lation with the Gell-Mann–Low–Sucher procedure 12,13. Such calculations have been performed
for the ground state of heliumlike ions 14,15,16,17 and also to some excited states of such ions 18,19.
Generally, however, this technique is not applicable for excited states with multiplet structure,
where the states can be very closely spaced or quasi-degenerate. Presently, only two proce-
dures are available for dealing with such problems in its full generality, namely the two-times
Green’s-function procedure, developed by Shabaev and coworkers 20,21,22,23 and the covariant
evolution-operator procedure, recently developed by us 24,25.



Table 1: Experimental data for some fine-structure separations of He-like ions in the 1s2p multiplet. (The values
for Z=2 and 3 are in MHz, the remaining ones in cm−1)

Z 3P1 −3 P0
3P2 −3 P0

3P2 −3 P1 Expt’l method
2 29616.9509(9) a 2291.175(1) b Laser spect.
3 155704.3(9) c -62678.4(9) c Laser spect.
7 8.6707(7) d Laser spect.
9 957.8730(12) e Laser spect.
10 1856(1) f Solar flare
12 833.133(15)g 4404.6(2,1)f Laser spect./Solar flare
18 27425(5) h Beam foil

a George et al. 5 b Storry et al. 2, Castilla et al. 3 c Riis et al. 6 d Thompson et al. 7

e Myers et al. 8 f Curdt et al. 9 g Myers et al. 10 h Kukla et al. 11

Another approach to deal with the structure of heliumlike ions is to use many-body proce-
dures of various kind, where the electron correlation can be treated essentially to all orders, and
corrected for QED effects by using the analytical expansion. The shortcoming of such an ap-
proach is that it is difficult to go beyond the leading order for the QED effects. It would therefore
be desirable to be able to combine MBPT and the numerical QED approach in some systematic
way, which seems to be necessary to achieve sufficient accuracy for light and medium-heavy
elements. The present work represents one step in that direction.

The atomic fine-structure is entirely due to relativity and QED, with leading orders of
(Zα)2 and (Zα)3, respectively, relative to the non-relativistic energies. For that reason the fine-
structure is a good candidate for testing the theory, when very accurate experimental results are
becoming available, particularly for heliumlike ions. For high Z a comparison between theory
and experiment will test QED at strong electric fields and for low Z this can be used to determine
the fine-structure constant, α, provided the theory of QED is trusted.

2 Time-independent perturbation theory. Quasi-degeneracy

In perturbation theory the Hamiltonian is normally partitioned into a zeroth-order Hamiltonian
and a perturbation

H = H0 +H ′. (1)

Working with a single reference or model function, Φ, the standard (Rayleigh-Schrödinger)
perturbation theory gives the first-order contribution to the wave function

Ψ(1) =
∑

Φi 6=Φ

|Φi〉〈Φi|H ′|Φ〉
E0 − Ei

0

. (2)

The model function, Φ, is in this case an eigenfunction of H0 and forms together with the
remaining eigenfunctions the basis functions,

H0 Φ = E0 Φ and H0 Φi = Ei
0 Φi.

This can easily be generalized to the case with several degenerate model functions, all of which
are then excluded from the summation in (2).

In the case of quasi-degeneracy (very closely lying states), some of the energy denominators
in (2) can be very small, which may cause serious convergence problems. In relativistic many-
body perturbation theory, applied to the fine structure in the 1s2p multiplet of He-like systems,



the states 1s2p1/2 and 1s2p3/2 are very close in energy and hence strongly mixed for light
elements. This has led to serious problems using a single model function 26, problems which can
be remedied by using an extended model space 27,28,29.

We consider now a number of eigenfunctions of the Hamiltonian

H Ψα = Eα Ψα (α = 1, 2, · · · d), (3)

referred to as the target functions. The relation between the target functions and the corre-
sponding model functions is given by a wave operator,

Ψα = ΩΨα
0 (α = 1, 2 · · · d). (4)

In the intermediate normalization we apply here, the model functions are projections of the
corresponding target functions on the model space,

Ψα
0 = P Ψα (α = 1, 2 · · · d). (5)

The wave operator satisfies the Bloch equation 27,30,28

[Ω,H0]P = (H ′ Ω− ΩPH ′ Ω)P. (6)

Expanding the wave operator order by order, leads instead of (2) to the first-order contribution

Ω(1)|m〉 =
∑
i∈Q

|i〉〈i|H ′|m〉
Em

0 − Ei
0

, (7)

where m/i represent basis functions inside/outside the model space. The sum is here restricted
to states in the complementary space (Q), outside the model space (P ). The Bloch equation
can also be used to derive the linked-diagram expansion for an extended model space, which can
be expressed 27,28

[Ω,H0]P = (H ′ Ω− ΩPH ′ Ω)LinkedP. (8)

The last term represents what is known as folded diagrams.
In the general case the model functions are not eigenfunctions of H0. Instead they are

solutions of the secular equation

Heff Ψα
0 = Eα Ψα

0 . (9)

Heff is matrix operator, acting in the model space and referred to as the effective Hamiltonian.
The eigenvectors of the effective Hamiltonian are the model functions (4) and the eigenvalues are
the corresponding exact energies (3). In intermediate normalization the effective Hamiltonian
has the form

Heff = PHΩP = PH0P + PH ′ΩP. (10)

In the MBPT procedure with an extended model space, the states of the model space are
excluded from the summations of the type (7), thus eliminating not only degenerate but also
quasi-degenerate states. The contribution due to (quasi)degenerate states is included to all
orders of perturbation theory by diagonalizing the effective Hamiltonian. This procedure has
been shown to improve the convergence rate drastically in the case of quasi-degeneracy 29.

In the case of the 1s2pmultiplet of heliumlike ions the two states
(
s1/2 p1/2

)
J=1

and
(
s1/2 p3/2

)
J=1

have the same symmetry, and for light elements they are closely spaced and hence strongly mixed.



By including these states in the model space their mixture will be appropriately taken care of,
which might be quite difficult, using the standard procedure with single reference function.

The main question is now: Can a similar procedure be applied in bound-state
QED? A major obstacle is here that the standard procedure for bound-state QED, the S-
matrix formulation, requires energy conservation between the initial and final states and hence
cannot be used to evaluate the elements of the effective Hamiltonian (9) non-diagonal in energy,
needed to treat quasi-degeneracy using an extended model space. Therefore, the procedure has
to be modified, as we shall demonstrate below.

3 Time-dependent perturbation theory

In order to find a procedure applicable also to a quasi-degenerate situation, we shall consider
time-dependent perturbation theory, although the problems we shall study usually are time inde-
pendent. The basic tool is here the time-evolution operator, U , which regulates the development
of the wave function in time

Ψ(t) ∝ U(t, t0) Ψ(t0) (t > t0).

We work in the interaction picture, where the operators and wave functions are related to those
in the conventional Schrödinger picture by a

OI(t) = eiH0t OS e−iH0t; ΨI(t) = eiH0t ΨS(t).

In this picture the time-dependent Schrödinger equation takes the form

i
∂

∂t
ΨI(t) = H ′

I ΨI(t),

which leads to the expansion 31

Uγ(t, t0) = 1 +
∞∑

n=1

(−i)n

n!

∫ t

t0

dtn
∫ t

t0

dtn−1 . . .

∫ t

t0

dt1T
[
H ′

I(tn)H ′
I(tn−1) . . .H ′

I(t1)
]
e−γ(|t1|+|t2|...+|tn|), (11)

where T is the time-ordering operator.
Due to the adiabatic damping, the perturbation vanishes in the limits t → ±∞ and the

exact wave function becomes equal to the unperturbed function in these limits, Φ = Ψ(±∞).
The wave function in time-independent theory corresponds to the time-dependent function at
t = 0, Ψ = Ψ(0).

Gell-Mann and Low 12 have shown that for a single reference function (closed-shell case), Φ,
the function

Ψ(t) = lim
γ→0

Uγ(t,−∞) Φ
〈Φ|Uγ(0,−∞)|Φ〉

is a normalized eigenfunction of the Hamiltonian (provided the limit exists). The evolution
operator has singularities due to unlinked diagrams, which are eliminated by the denominator.

When several reference or model functions are used (multi-dimensional model space), the
Gell-Mann–Low procedure has to be modified 32,33,

Ψα(t) = lim
γ→0

Uγ(t,−∞)φα

〈φα|Uγ(0,−∞)|φα〉
. (12)

aWe use here relativistic units: c = m = h̄ = ε0 = 1; e2 = 4πα.



φα are here certain ’parent’ functions in the model space. In this case the evolution operator has
singularities or quasi-singularities also for linked diagrams, when a model-space state appears
as an intermediate state. This corresponds to the folded diagrams in time-independent MBPT,
mentioned above.

In order to treat the (quasi)singularities, we rewrite the evolution operator, operating on the
model space, as 25

U(t,−∞) = 1 + Ũ(t,−∞)PU(0,−∞), (13)

leaving out the subscript γ. This leads to the expansion

U = 1 + Ũ + ŨP Ũ + ŨP ŨP Ũ + · · ·
Ũ = U − 1− ŨP Ũ − ŨP ŨP Ũ − · · · . (14)

Ũ is referred to as the reduced evolution operator and can be shown to be regular, i.e., free from
(quasi)singularities. The (quasi)singularities are eliminated by the counterterms (−ŨP Ũ etc.)
in (14).

For t = 0 the definition (13) becomes

U(0,−∞) = 1 + Ũ(0,−∞)PU(0,−∞),

which leads to

U(0,−∞) =
(
1 +QŨ(0,−∞)

)
PU(0,−∞).

Inserted in the generalized Gell-Mann–Low relation (12) this gives

Ψα = Ψα(0) =
[
1 +QŨ(0,−∞)

]
Ψα

0 ,

where

Ψα
0 = PΨα =

PU(0,−∞)φα

〈φα|U(0,−∞)|φα〉
.

This we can compare with the MBPT equation above (4), showing that the wave operator
becomes

Ω = 1 +QŨ(0,−∞). (15)

The effective interaction is defined

H ′
eff = Heff − PH0P

and this can be expressed by means of the reduced evolution operator as 34,25

H ′
eff = P

[
i
∂

∂t
Ũ(t,−∞)

]
t=0

P. (16)

4 Bound-state QED

4.1 S-matrix

The S-matrix is related to the time-evolution operator by S = U(∞,−∞). The S-matrix for
single-photon exchange between electrons, represented by the Feynman diagram in Fig. 1, is
given by

S(2) = −1
2

∫∫
d4x1 d4x2 ψ̂

†(x1) ψ̂†(x2) iI(x2, x1) ψ̂(x2) ψ̂(x1) e−γ(|t1|+|t2|). (17)
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Figure 1: The S-matrix for single-photon exchange

Here b,

ψ̂(x) = cj φj(x); ψ̂†(x) = c†j φ
†
j(x) (18)

are the electron-field operators in the interaction picture, γ is an adiabatic-damping factor, which
eventually goes to zero, γ → +0, and

I(x2, x1) = e2αµ
1α

ν
2 DFµν(x2, x1) (19)

represents the electron-electron interaction, DFµν(x2, x1) being the photon propagator. Identifi-
cation with the second-quantized expression,

S(2) =
1
2
c†ic

†
j

〈
ij

∣∣S(2)
∣∣kl〉 clck, (20)

yields the ’matrix element’

〈
rs

∣∣S(2)(x1, x2)
∣∣ab〉 = −

∫∫
d4x1 d4x2 φ

†
r(x1)φ†s(x2) iI(x2, x1)φa(x1)φb(x2) e−γ(|t1|+|t2|)

= −i
∫∫

dt1 dt2
∫

dz
2π

〈
rs

∣∣I(z)∣∣ab〉 e−it1(q−z) e−it2(q′+z) e−γ(|t1|+|t2|), (21)

where I(z) is the Fourier transform of (19) and q = εa− εr; q′ = εb− εs. After integrations over
time and z this becomes 〈

rs
∣∣∣S(2)

∣∣∣ab〉 = −2π∆γ(q + q′)
〈
rs

∣∣∣I(q)∣∣∣ab〉,
where ∫ ∞

−∞
dt e−ity−γ|t| =

2γ
y2 + γ2

= 2π∆γ(y). (22)

The relation between the S-matrix and the energy shift is given by the Sucher formula 13,31

∆E = lim
γ→0

iγ
2

∑
n n〈rs|S(n)|ab〉
〈rs|S|ab〉

, (23)

bWe use here the Furry picture, where the single-electron orbitals are solutions of the Dirac equation in the
field of the nucleus (and possibly other electrons), V (r),

hD φj =
[
p · α + β + V (r)

]
φj = εj φj .

c†j/cj are the corresponding creation/annihilation operators. We apply the summation convention with summation
over repeated indices.
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Figure 2: The covariant evolution operator for single-photon exchange.

which in the lowest order (n = 2) becomes

∆E = lim
γ→0

iγ〈rs|S(2)|ab〉. (24)

In the present case this gives

∆E = δq,−q′
〈
rs

∣∣Veq(q)
∣∣ab〉. (25)

The Kronecker delta factor implies here that the result is nonvanishing only for q + q′ = 0 or
εa + εb = εr + εs, which means that energy must be conserved between the initial and final
states. This makes the method inapplicable for treating quasi-degeneracy, using the method of
extended model space.

4.2 Covariant form of the evolution operator

We shall now demonstrate how the evolution operator, discussed in Sec. 3, can be used to
treat quasi-degeneracies also in QED problems. In this case, however, it is necessary to allow
time to run also in the backward direction in order to include the contribution from positron
states. Therefore, we have to generalize the standard procedure, as illustrated for single-photon
exchange in Fig. 2. This corresponds to the expression 24,25

U
(2)
Cov(t

′,−∞) = −1
2

∫∫
d4x1 d4x2

[
Θ(t′ − t1) ψ̂

†
+(x1)−Θ(t1 − t′) ψ̂†−(x1)

]
×

×
[
Θ(t′ − t2) ψ̂

†
+(x2)−Θ(t2 − t′) ψ̂†−(x2)

]
iI(x2, x1) ψ̂(x2) ψ̂(x1) e−γ(|t1|+|t2|), (26)

where Θ is the Heaviside step function. The time integrations are here performed over all times,
making this operator covariant – like the S operator but in contrast to the evolution operator for
forward evolution only (11). The operator (26) can also be expressed by means of the electron
propagator as

U
(2)
Cov(t

′,−∞) = −1
2

∫∫
d3x′1 d3x′2 ψ̂

†(x′1) ψ̂
†(x′2) ×

×
∫∫

d4x1 d4x2 iSF (x′2, x2) iSF (x′1, x1) iI(x2, x1) ψ̂(x2) ψ̂(x1) e−γ(|t1|+|t2|), (27)



which yields the matrix element〈
rs

∣∣U (2)
Cov(t

′,−∞)
∣∣ab〉 = −

∫∫
d3x′1 d3x′2 φ

†
r(x

′
1)φ

†
s(x

′
2)×

×
∫∫

d4x1 d4x2 iSF (x′1, x1) iSF (x′2, x2) iI(x2, x1)φa(x1)φb(x2) e−γ(|t1|+|t2|) =

=
∫∫

dt1 dt2
〈
rs

∣∣∣SF (x′1, x1)SF (x′2, x2) iI(x2, x1)
∣∣∣ab〉 eit′(εr+εs) e−it1εa−it2εb e−γ(|t1|+|t2|). (28)

After time integrations this becomes〈
rs

∣∣∣U (2)
Cov(t

′,−∞)
∣∣∣ ab〉 =

〈
rs

∣∣V (q, q′)
∣∣ ab〉 e−it′(q+q′+iγr+iγs)

q + q′ + iγr + iγs
, (29)

where γx has the same sign as εx. Using the Feynman gauge we obtain

V (q, q′) =
∫

dk f(k)
[ 1
q − (k − iγ)r

+
1

q′ − (k − iγ)s

]
(30)

f(k) = − e2

4π2 r12
(1−α1 ·α2) sin(kr12).

The contributions to the first-order wave operator (15) and effective interaction (16) then become

Ω(1) = QU
(2)
Cov(0,−∞) =

∑
|rs〉∈Q

|rs〉〈rs|V (q, q′)|ab〉
εa + εb − εr − εs

(31)

〈
rs

∣∣H ′(1)
eff

∣∣ab〉 =
〈
rs

∣∣∣[i ∂
∂t
U

(2)
Cov(t,−∞)

]
t=0

∣∣∣ab〉 =
〈
rs

∣∣V (q, q′)|ab〉 (|rs〉 ∈ P ). (32)

In the first case the state |rs〉 lies in the complementary space (Q) (outside the model space,
P ) and in the second case inside the model space. The effective interaction agrees with the
S-matrix result, when the initial and final energies are the same. But the important point is
here that the evolution-operator result is valid also when these energies are different, making
the procedure applicable also to an extended model space with several unperturbed energies.

Another important advantage of the evolution-operator method is that – in contrast to the
S-matrix formulation (23) – no limiting procedure of the adiabatic damping factor γ is needed.
(This factor is here needed only to indicate the position of possible poles.) This implies that
the integrations can be performed independently with exact energy conservation at each vertex.
This simplifies considerably the treatment of (quasi)singularities, as we shall demonstrate with
the two-photon exchange below.

4.3 Two-photon exchange

There are two Feynman diagrams representing the two-photon exchange between the electrons,
the ’ladder diagram’ and the ’crossed-photon diagram’, illustrated in Fig. 3. The covariant
evolution operator for the ladder diagram is given by〈

rs
∣∣∣U (4)

Cov(t
′,−∞)

∣∣∣ ab〉 =
〈
rs

∣∣∣ ∫∫
d4x3 d4x4 iSF (x′3, x3) iSF (x′4, x4) iI(x4, x3) ×

×
∫∫

dt1 dt2 iSF (x3, x1) iSF (x4, x2) iI(x2, x1)
∣∣ab〉 eit′(εr+εs) e−it1εa−it2εb e−γ(|t1|+|t2|+|t3|+|t4|), (33)

and similarly for the crossed diagram.
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Figure 3: Two-photon exchange diagrams, the ladder diagram (left) and the crossed-photon diagram (right).

The ladder diagram has a (quasi)singularity, when the intermediate state (tu) is (quasi)-
degenerate with the initial state (ab). In order to study this (quasi)singularity, we first separate
the ladder into a separable and a non-separable part. A diagram is said to be separable, if the
two photons do not overlap in time, or in other words that there exists an intermediate time
(t = t′′), for which there is no free photon, as indicated in the leftmost diagram in Fig. 4. If
the intermediate state of a separable diagram lies in the model space, the diagram is said to be
reducible.

It can be shown that the separable two-photon diagram is given by 25

〈
rs

∣∣∣U (4)
Sep(t

′,−∞)
∣∣∣ ab〉 =

〈
rs

∣∣∣V (q + p′, q′ + p)
∣∣∣tu〉 〈

tu
∣∣∣V (p, p′)

∣∣∣ab〉 e−it′(q+q′)

(q + q′)(p+ p′)
, (34)

where q = εa − εr; q′ = εb − εs; p = εa − εt; p′ = εb − εu and V (q, q′) is given by (30). The
corresponding contribution to the effective Hamiltonian is then, using (16),

〈rs |V (q + p′, q′ + p)| tu〉 〈tu |V (p, p′)| ab〉
p+ p′

, (35)

which is (quasi)singular, when the intermediate state (tu) is (quasi)degenerate with the initial
state (ab) (p+ p′ ≈ 0).

In the expression for the effective interaction (16), the reduced evolution operator (11)
appears, which in the present case is given by

Ũ (4) = U (4) − U (2)PU (2). (36)

The counterterm, −U (2)PU (2), is here

〈rs |V (q − p, q′ − p′)| tu〉 〈tu |V (p, p′)| ab〉
p+ p′

. (37)

If we introduce W (E0) = V (q + p′, q′ + p) = V (E0 − εr − εu, E0 − εs − εt) with ∆E = p+ p′ =
E0 − εt − εu, the contribution to the effective Hamiltonian can be expressed

〈rs |W (E0)−W (E0 −∆E)| tu〉
∆E

〈
tu

∣∣V (p, p′)
∣∣ ab〉 . (38)

This expression is regular – free from (quasi)singularities. When ∆E → 0, the result becomes〈
rs

∣∣∣[ δ

δE
W (E)

]
E=E0

∣∣∣tu〉 〈
tu

∣∣V (p, p′)
∣∣ab〉, (39)

which identical to the S-matrix result. The result (38), however, is more general and (as the
single-photon result) valid for a model space that is not necessarily degenerate. A similar result
can be derived for the wave operator, which is also regular.
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Figure 4: The reduced evolution operator for the two-photon exchange. The second diagram represents the
counterterm U (2)PU (2) in (36)

When a separable two-photon diagram is irreducible (not reducible), then there is no coun-
terterm, and the contribution to the effective Hamiltonian is given by (35). The summation
is then performed only over intermediate states in the complementary space (Q), and there is
no (quasi)degeneracy. This is then quite similar to the standard expression of second-order
perturbation theory (2), which is entirely contained in the separable two-photon diagram. In
addition, the separable two-photon diagram contains QED effects – beyond standard MBPT –
due to negative energy states and retardation.

The remaining, non-separable part of the ladder diagram is always regular, and this is also
the case of the crossed two-photon diagram, which has no reducible part. These parts can be
evaluated in a straightforward manner. The non-separable diagrams represent pure QED effects
– with no analogy in MBPT.

The above illustrates the close analogy between standard MBPT and bound-state QED using
the covariant-evolution-operator method – a fact which may open up possibilities of combining
QED and MBPT in a more systematic fasion than has previously been possible.

5 Results and discussion

We have applied the covariant-evolution-operator method to evaluate the fine-structure separa-
tion of the 1s2p multiplet of the He-like ions of Ne and Ar, and the results are reproduced in
Table 2. Our calculations include the exchange of one and two photons between the electrons,
as described above, which contains relativistic many-body effects to second order in addition to
the QED effects. Furthermore, we have included relativistic electron correlation effects beyond
second order from a separate many-body calculation. The remaining QED efects, not included
in the diagrams evaluated, namely the self-energy and vacuum-polarization contributions, are
estimated by means of the analytical Zα expansion. Our numerical results are compared with
those of Drake 35 and Plante et al. 26, as well as with available experimental results 11,9.

Our calculation represents the first application of bound-state QED to a quasi-degenerate
fine-structure separation, using a numerical technique to all orders of Zα. The results of our
calculations agree very well with available experimental data.

Our results agree also well with those of Drake and Plante et al. The calculations of Drake
are performed using highly correlated non-relativistic wave functions of Hylleraas type with
relativistic and QED effects estimated from the analytical expansion. In the work of Plante et
al. a relativistic MBPT procedure is used, with the QED correction separately added.

For the elements presented here the difference between the theoretical results is hardly
significant compared to the experimental and theoretical uncertainties. (For the argon ion the
result of Drake differs from the experimental result by 2-3 standard deviations, which is likely
due to inaccuracy in the relativistic correction.) When higher accuracy is needed, however,



Table 2: Comparison between experiment and theory for the fine-structure separations the 1s2p multiplet of some
He-like ions (in µ Hartree≈ 27,2 µ eV).

Z 3P1 −3 P0
3P2 −3 P0

3P2 −3 P1

10 1371(7) 8458(2) Expt’l 9

1361(6) 8455(6) Drake 35

1370 8469 Plante et al. 26

1373 8464 Present 25

18 124960(30) Expt’l 11

23600(60) 124810(60) Drake 35

23690 124942 Plante et al. 26

23792 124938 Present 25

higher-order QED effects will be important. Already for argon we have found that the effects
beyond the leading (Zα)3 order are at least comparable to that of the leading term.

As can be seen from Table 1, quite accurate experimental data are available for neutral helium
as well as for the ions of lithium and fluorine. For very low Z the numerical problems increase,
due to slow convergence of the partial-wave expansion. In addition, the electron correlation
plays here a relatively more important role, and two-photon exchange may not be sufficient. For
these reasons, it will be difficult at present to compete with the analytical results for He and
Li+. In order to achieve higher accuracy with the numerical technique, it would be necessary
to combine the QED and MBPT procedures in some way, and developments along these lines
are in progress at our laboratory. A good test of the present procedure described here, however,
would be to try to reproduce the experimental result of the fluorine ion, which has an accuracy
of the order of one ppm. Here high-order QED effects will certainly be significant. Such an
accurate numerical result could then be used to test the analytical expansion and possible to
estimate higher-order non-calculated terms of that expansion. In this way the numerical results
could contribute to the accuracy of the theoretical result also for very low Z and possibly to the
evaluation of the fine-structure constant.
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